PENDEKATAN KNOWLEDGE MANAGEMENT: PENGEMBANGAN E-LEARNING
Secara umum knowledge management meliputi dua bagian utama yaitu proses-proses yang dalam pengetahuan itu sendiri dan elemen-elemen penopang, seperti orang dan teknologi. Proses-proses dalam knowledge management merupakan pendekatan yang tepat untuk dijadikan sebagai landasan pengembangan e-learning, karena proses-proses itu sendiri yang terjadi dalam proses pembelajaran. Banyak pakar mengajukan proses-proses yang terdapat dalam knowledge management. Dan dalam tulisan ini digunakan sesuai definisi yang diajukan sebelumnya yaitu Knowledge Management (KM) dapat didefiniskan sebagai satu set (himpunan) intervesi orang, proses dan tool (teknologi) untuk mendukung proses pembuatan, pembauran, penyebaran dan penerapan pengetahuan.
Pembuatan pengetahuan adalah proses perbaikan atau penambahan potongan-potongan pengetahuan tertentu selama proses pembelajaran terjadi melalui pengalaman. Pembauran pengetahuan merupakan proses pengumpulan, penyimpanan dan penyortiran dari pengetahuan yang dikembangkan dengan pengetahuan yang dimiliki. Penyebaran pengetahuan adalah proses pengambilan dan pendistribusian pengetahuan untuk dipergunakan dalam proses pembelajaran yang lain. Penerapan pengetahuan merupakan proses pemanfaatan pengetahuan yang ada untuk membantu menyelesaikan masalah yang dihadapi. Pengetahuan dikembangkan dalam proses pengalaman, seperti problem-solving, projek atau tugas [4]. Melalui proses-proses knowledge management ini memberikan kerangka yang menyeluruh terhadap pengetahuan itu sendiri yang menjadi sumber dalam proses pembelajaran, dan juga tentunya dalam e-learning. Pelajar (learner) dan juga pengajar (teacher) dapat melibatkan diri dalam proses daur hidup pengetahuan, dan akhirnya dapat mengikuti perkembangan pengetahuan itu sendiri untuk mencapai nilai-nilai yang lebih besar dari sebelumnya.
Perangkat lunak e-learning yang dikembangkan saat ini lebih terfokus pada satu proses knowledge management yang saling terpisah, sehingga tujuan dari proses pembelajaran untuk mencapai sasaran-sasaran yang lebih tinggi untuk pengajar, pelajar atau lembaga tidak dapat mencapainya dengan baik. LMS sebagai sistem manajemen e-learning yang ada sekarang lebih terfokus pada bagaimana menyebarkan mata pelajaran secara online kepada pelajar, meskipun beberapa LMS telah ditambahkan beberapa fungsi seperti library management, discussion forum, video conferencing. LMS tidak dapat mendukung sasaran lainnya seperti menumbuhkan wawasan yang terfokus, memanfaatkan pengalaman yang lain untuk membuat produk/sistem yang inovatif, tidak memberikan wawasan daur pertumbuhan pengetahuan. Dengan pendekatan KM untuk e-learning akan dapat dikembangkan beberapa sistem yang mempunyai tujuan yang berbeda sesuai dengan sasaran yang ditetapkan, meskipun secara teknologi akan banyak kesamaan satu sama lain. Tabel di bawah ini menjelaskan tiga tipe perangkat lunak e-learning yang dapat dikembangkan untuk mendukung proses pembelajaran secara lebih menyeluruh dengan pendekatan KM.
Tiga tipe perangkat lunak untuk mengelola proses pembelajaran saling terkait secara tujuan dan sasaran yang ditetapkan oleh lembaga, seperti dalam gambar di bawah ini.
[1] Mahnaz Moallem, “Applying Constructivist and Objectivist Learning Theories in the Design of A Web-Based Course: Implications for Practice” Educational Technology & Society, Vol. 4, No. 3, pp. 113 – 125, 2001
%SYS-5-CONFIG_I: Configured from console by console
Router#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
* - candidate default, U - per-user static route, o - ODR
P - periodic downloaded static route
Gateway of last resort is not set
10.0.0.0/24 is subnetted, 6 subnets
S 10.1.4.0 [1/0] via 10.1.6.1
[1/0] via 10.1.7.2
S 10.1.5.0 [1/0] via 10.1.6.1
[1/0] via 10.1.7.2
C 10.1.6.0 is directly connected, Ethernet0/0/0
S 10.1.7.0 [1/0] via 10.1.6.1
[1/0] via 10.1.8.1
C 10.1.8.0 is directly connected, FastEthernet0/0
C 10.1.9.0 is directly connected, FastEthernet0/1
6. Cek Koneksi dari :
Host A Ke Router A (RA)
PC>ping 10.1.4.1
Pinging 10.1.4.1 with 32 bytes of data:
Reply from 10.1.4.1: bytes=32 time=46ms TTL=255
Reply from 10.1.4.1: bytes=32 time=34ms TTL=255
Reply from 10.1.4.1: bytes=32 time=44ms TTL=255
Reply from 10.1.4.1: bytes=32 time=55ms TTL=255
Ping statistics for 10.1.4.1:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
Minimum = 34ms, Maximum = 55ms, Average = 44ms
PC>ping 10.1.5.1
Pinging 10.1.5.1 with 32 bytes of data:
Reply from 10.1.5.1: bytes=32 time=57ms TTL=255
Reply from 10.1.5.1: bytes=32 time=36ms TTL=255
Reply from 10.1.5.1: bytes=32 time=39ms TTL=255
Reply from 10.1.5.1: bytes=32 time=35ms TTL=255
Ping statistics for 10.1.5.1:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
Minimum = 35ms, Maximum = 57ms, Average = 41ms
Host A Ke Router B (RB)
PC>ping 10.1.5.2
Pinging 10.1.5.2 with 32 bytes of data:
Reply from 10.1.5.2: bytes=32 time=85ms TTL=254
Reply from 10.1.5.2: bytes=32 time=83ms TTL=254
Reply from 10.1.5.2: bytes=32 time=91ms TTL=254
Reply from 10.1.5.2: bytes=32 time=78ms TTL=254
Ping statistics for 10.1.5.2:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
Minimum = 78ms, Maximum = 91ms, Average = 84ms
PC>ping 10.1.7.1
Pinging 10.1.7.1 with 32 bytes of data:
Reply from 10.1.7.1: bytes=32 time=73ms TTL=254
Reply from 10.1.7.1: bytes=32 time=86ms TTL=254
Reply from 10.1.7.1: bytes=32 time=88ms TTL=254
Reply from 10.1.7.1: bytes=32 time=83ms TTL=254
Ping statistics for 10.1.7.1:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
Minimum = 73ms, Maximum = 88ms, Average = 82ms
PC>ping 10.1.6.1
Pinging 10.1.6.1 with 32 bytes of data:
Reply from 10.1.6.1: bytes=32 time=83ms TTL=254
Reply from 10.1.6.1: bytes=32 time=75ms TTL=254
Reply from 10.1.6.1: bytes=32 time=69ms TTL=254
Reply from 10.1.6.1: bytes=32 time=70ms TTL=254
Ping statistics for 10.1.6.1:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
Minimum = 69ms, Maximum = 83ms, Average = 74ms
Host A Ke Router C (RC)
PC>ping 10.1.7.2
Pinging 10.1.7.2 with 32 bytes of data:
Reply from 10.1.7.2: bytes=32 time=128ms TTL=252
Reply from 10.1.7.2: bytes=32 time=105ms TTL=253
Reply from 10.1.7.2: bytes=32 time=158ms TTL=252
Reply from 10.1.7.2: bytes=32 time=147ms TTL=253
Ping statistics for 10.1.7.2:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
Minimum = 105ms, Maximum = 158ms, Average = 134ms
PC>ping 10.1.8.1
Pinging 10.1.8.1 with 32 bytes of data:
Reply from 10.1.8.1: bytes=32 time=123ms TTL=252
Reply from 10.1.8.1: bytes=32 time=102ms TTL=253
Reply from 10.1.8.1: bytes=32 time=121ms TTL=252
Reply from 10.1.8.1: bytes=32 time=114ms TTL=253
Ping statistics for 10.1.8.1:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
Minimum = 102ms, Maximum = 123ms, Average = 115ms
Host A Ke Router D (RD)
PC>ping 10.1.9.1
Pinging 10.1.9.1 with 32 bytes of data:
Reply from 10.1.9.1: bytes=32 time=117ms TTL=252
Reply from 10.1.9.1: bytes=32 time=128ms TTL=253
Reply from 10.1.9.1: bytes=32 time=113ms TTL=253
Reply from 10.1.9.1: bytes=32 time=102ms TTL=253
Ping statistics for 10.1.9.1:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
Minimum = 102ms, Maximum = 128ms, Average = 115ms
PC>ping 10.1.6.2
Pinging 10.1.6.2 with 32 bytes of data:
Reply from 10.1.6.2: bytes=32 time=140ms TTL=252
Reply from 10.1.6.2: bytes=32 time=101ms TTL=253
Reply from 10.1.6.2: bytes=32 time=104ms TTL=253
Reply from 10.1.6.2: bytes=32 time=104ms TTL=253
Ping statistics for 10.1.6.2:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
Minimum = 101ms, Maximum = 140ms, Average = 112ms
PC>ping 10.1.8.2
Pinging 10.1.8.2 with 32 bytes of data:
Reply from 10.1.8.2: bytes=32 time=186ms TTL=252
Reply from 10.1.8.2: bytes=32 time=119ms TTL=253
Reply from 10.1.8.2: bytes=32 time=122ms TTL=253
Reply from 10.1.8.2: bytes=32 time=127ms TTL=253
Ping statistics for 10.1.8.2:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
Minimum = 119ms, Maximum = 186ms, Average = 138ms
Host A Ke Host B
PC>ping 10.1.9.2
Pinging 10.1.9.2 with 32 bytes of data:
Reply from 10.1.9.2: bytes=32 time=162ms TTL=124
Reply from 10.1.9.2: bytes=32 time=150ms TTL=125
Reply from 10.1.9.2: bytes=32 time=140ms TTL=125
Reply from 10.1.9.2: bytes=32 time=144ms TTL=125
Ping statistics for 10.1.9.2:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
Minimum = 140ms, Maximum = 162ms, Average = 149ms
7. Analisa Route Host A Ke Host B
PC>tracert 10.1.9.2
Tracing route to 10.1.9.2 over a maximum of 30 hops:
1 61 ms 49 ms 35 ms 10.1.4.1
2 70 ms 72 ms 67 ms 10.1.5.2
3 151 ms 120 ms 105 ms 10.1.6.2
4 160 ms 190 ms 134 ms 10.1.9.2
Trace complete.
8. Analisa Route Host B Ke Host A
PC>tracert 10.1.4.2
Tracing route to 10.1.4.2 over a maximum of 30 hops:
1 35 ms 46 ms 37 ms 10.1.9.1
2 70 ms 71 ms 99 ms 10.1.7.2
3 138 ms 104 ms 107 ms 10.1.5.1
4 122 ms 164 ms 142 ms 10.1.4.2
Trace complete.
9. Kesimpulan
Dari hasil praktek tugas jarkom yang saya lakukan di lab dengan 2 Buah PC yang menggunakan 4 buah Router dapat terkoneksi atau dapat terhubung dari PC1(Host A) ke Router A,B,C maupun D dan PC1(Host A) ke PC2(Host B) yang terkoneksi dengan baik.saya dapat mengetahui troublesoot pada routing static untuk beberapa jaringan yang telah kami praktekkan menggunakan packet tracer di lab.